Harlow Green Community Primary School

Maths Calculation Policy

Representations

five / tens frames

part whole models

bar models

Charts

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

hundred square

gattegno chart

10,000,000	20,000,000	30,000,000	40,000,000	50,000,000	60,000,000	70,000,000	80,000,000	90,000,000
1,000,000	2,000,000	3,000,000	4,000,000	5,000,000	6,000,000	7,000,000	8,000,000	9,000,000
100,000	200,000	300,000	400,000	500,000	600,000	700,000	800,000	900,000
10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000
1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	70	8	9
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.1
0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.1

		Year 1 Additio	n	
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary
Counting and adding one more	Children add another object to a group to find one more Add one more to a set of multilink cubes.	Children can use a number line to understand how to link counting on with finding one more.	Children can use a number line to understand how to link counting on with finding one more.	Addition Add More And Make Sum Total Altogether Double Near double Half Halve One more, two moreten more How many more to make? How many more is than? How much more is?

Understand	Recognise a group of 10		<i>"1 ten and 4 ones equals 14"</i>	
teen numbere	objects and count more		"10 + 4 = 14	
ac one ton		00000		
and "comp		00000		
and some				
more				
	and the second se	Haw Many More to		
		make 14?		
	6666	MURC IT.		
	Contraction of the local distribution of the	"14 is 10 and 4 more"		
	"There are 10 black cubes			
	and 4 grey cubes. 10 and 4			
	more is 14"			
	Use a ten frame to support			
	understanding of a complete			
	10 for teen numbers			
		"12 is 10 and 2 more"		
	"14 is 10 and 4 more"			
	Martin Branch			

Combining two parts to make a whole: part-	Use part whole model.	Use pictures to add two numbers together as a group or in a bar.	Use the part-part whole diagram to move into the abstract.	
whole model	Use cubes to add two	473=7	3	
	numbers together as a group or in a bar.		3 + 4 = 7	
			10 = 6 + 4	
Starting at the bigger number and counting on	Children use knowledge of counting to 20to find a total by counting on using people of objects	Start with the larger number on the number line and count on in ones or in one jump to find the answer.	Place the larger number in your head and count on the smaller number to find the answer	
	Start with the larger number on the bead string and then count on the smaller number one by one to find the answer.	12 + 5 = 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		

Regrouping to make 10/Bridging the 10 using number bonds (This is an essential skill for column addition further up the school).	Start with the bigger number, partition the smaller number to make 10 and adding on the rest Use tens frames	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10 $\overline{q+3-1-2}$ $\overline{x-x-x}$	7 + 4 = 11 If I am at seven, how many more do I need to make 10? How many more do I add on now?
Represent and use number bonds and related subtraction facts within 20	3 more than 4	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Emphasis should be on the language " 1 more than 5 is equal to 6." "2 more than 5 is 7." "8 is 3 more than 5."
		Year 2 Additio	n
Objective and strategy	Concrete	Pictorial	Abstract

unitising to add 10s	+ ==7		3 + 4 = 7 therefore 30 + 40 = 70	
Use known number facts Part-part whole model	Children explore ways of making numbers to and within 20.	$ \begin{array}{c} 5 \\ 5 $	1 + 1 = 16 = 16 - 1 = 15 $1 + 15 = 16 = 16 - 15 = 1$	
Bar modelling can be used to support	10 = 7 + 3 100 = 70 + 30	$ \begin{array}{c} $		
Adding a two digit number and ones	Use tens frame to make 10 and then explore the pattern.	Use number line to model	Children use knowledge of composition of number	

	1	6	+	7	11	2	3
		+	4			+	3
	/	_		1	1	_	7
1	6		2	0		2	3

The National Curriculum states Recording addition and subtraction in columns supports place value and prepares for formal written methods with larger numbers

There is <u>NOT</u> an expectation that children in KS1 will complete formal written methods for addition. However, place value columns can be used alongside pictorial representations to demonstrate place value.

				23	2]
-			17			-	5	
	1	7	7	5	11	2	2	
	Б	+	1	1	-	2	2	
	2	2,	-	1	7	-	5	
	2	2	-	5	-	1	7	

	IIIII ,		
Add three 1 digit numbers	Combine to make 10 first if possible.	Regroup and draw representations.	Combine the two numbers that make/bridge the ten then add
			on the remaining number.
			(+) + 7 + 6 = 10 + 7 = 1 7 $(3) + (7) + 4 = 10 + 4 = 1 4$

		Year 3 Additio	n	
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary
Understanding place value to 1,000	Understand the cardinality of 100 and the link with ten tens Unitise 100 and count in steps of 100	Represent steps of 100 on a number line and count up to 1,000 and back • 100 200 300 400 500 600 700 800 900 1000 • + + + + + + + + + + + + + + + + + + +		Addition Add More And Make Sum Total Altogether Double Near double Half Halve One more, two moreten more, one hundred more How many more to make?
Column addition – no regrouping	Model using dienes or place value counters With 2 digit numbers	Representing dienes pictorially	Add the ones first, then the tens and then the hundreds. H T O $2 2 3$ $1 4$ $3 3 7$	How many more is than? How much more is? Equals Is the same as Number bonds/pairs/facts Tens boundary/hundreds boundary

	and 3 digit numbers 1005 105 15100 10 10 1100 10 1100 10 1100 10 1100 10 11 1 11 11 11 1 11 1 11 1 11 1 11 1 1 11 1 1 1 1 1 1 1 1 1		
Column addition with regrouping	Model exchanging 10 ones	Children could draw a representation of the grid to further support their understanding, carrying the regrouped ten underneath the line Then modelling where an exchange occurs between the tens and the hundreds	Start by partitioning the numbers before an informal method to show the exchange $H = 0$

	1		Note: prograggion with	
	ТО		avelone in would be an	
			exchanging would be an	
			exchange in one column, then	
			two columns etc.	
	and the second			
	TO			
	and the second second second second			
	and the second			
	and the second			
	Then modelling where an			
	exchange occurs between			
	the tens and the hundreds.			
	Dienes and place value			
	counters are used			
	1	Year 4-6 Addition	on	
Objective and	Concrete	Pictorial	Abstract	Vocabulary
strateav				

Y4 - Add numbers with up to 4 digits	Children continue to use dienes or move onto place value counters to add. It is important that the similarities and differences between the two resources are discussed.	Draw representations using a place value grid of either Base 10 or place value counters.	Continue from previous work to regroup to hundreds as well as tens. The headings only need to be there when this is initially being taught. Relate to money and measures.	Addition Add More And Make Sum Total
	HITO		Th H T O 3517 + 396 3813	Altogether Double Near double Half Halve One more, two moreten more, one hundred more How many more to make? How many more is than? How much more is?
		H T O 00 000 000 000 000 000 000 0 000 000 0 000 000		Equals Is the same as Number bonds/pairs/facts Tens boundary/hundreds boundary/ones boundary/tenths boundry Inverse
Y5 - Add numbers with more than 4 digits.	As Year 4 - introduce decimal place value counters and model exchange for addition.	tens ones tenths hundredth		

Add decimals with 2 decimal places, including money			72.8+54.6=127.4 72.8 +54.6 127.4	
			$ \begin{array}{r} 8 1 0 5 9 \\ 3 6 6 8 \\ 1 5 3 0 1 \\ + 2 0 5 5 1 \\ 1 2 0 5 7 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	
 Y6 - Add several numbers of increasing complexity. Include adding money, measures and decimals with different numbers of decimals 	As ¥5	As Y5	Insert zeros for place holders Addition $f_2 3.59 + f_{1.55} = f_{31.14}$ $f_2 3.59$ $f_{1.55} = f_{31.14}$ $f_{1.14}$	

		$ \begin{array}{r} 2 3.3 6 1 \\ 9.080 \\ 5 9.770 \\ + 1.300 \\ 9 3.511 \\ \end{array} $	
--	--	---	--

	Year 1 Subtraction				
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary	
Taking away ones	Use physical objects (counters, cubes etc) to show how objects can be taken away. 6-4 = 2	Cross out objects to show what has been taken away.	7 - 4 = 3 16 - 9 = 7	Subtract Take away How many are left/left over? How many have gone? Ones less, two less, ten less How many fewer is than? How much less is? Difference between	
Counting back	Move objects away from the group counting backwards.	Count back in ones using a number line. 5-3=2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Children can use a number line to help. Put 13 in your head. Count back 4. What number are you at?		
Finding the difference	Compare objects and amounts.	Children represent objects pictorially. 7 'Seven is 3 more than four' 4 'I am 2 years older than my sister' Count on using a number line to find the difference.	The difference between 10 and 6 is 4. 10 - 4 = 6 Sophie has 12 football cards. Her sister has 5. How many more does Sophie have than her sister?		

	This can then form the basis of introducing bar modelling/part part whole	Children understand "Find the difference as subtraction" 11- 6 = 5		
Part/whole model	Link to addition. Use the PPW model to model the inverse.	Use pictorial representation to show the part.	10 - 4 = 6	

		4		
Make 10	14-9 Make 14 on the tens frame. Take 4 away to make 10, then take 5 away to make 9.	13-7 13-7=6 Jump back 3 to 10, then jump back another 4.	16 - 8 How many do we need to take away to make 10? How many do we need to take away after?	
		Year 2 <mark>Subtract</mark>	ion	

Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary
Subtracting multiples of 10 Use known number bonds and unitising to subtract multiples of 10	Move objects away from the group Grand Area and	PartPart2050Whole7070 70^{-70} 252050720520550	70 - 50 = 20 70 - 20 = 50	Subtract Take away How many are left/left over? How many have gone? Ones less, two less, ten less, one hundred less How many fewer is than? How much less is? Difference between Equals Is the same as Number bonds/pairs/facts Tens boundary
Regroup a ten into ten ones	Use a place value chart to show how to change a ten into ten ones 20 - 4	70 - 50 = 20 $20 - 4 = 1.6$ $4 - 4 = 1.6$ $4 - 4 = 1.6$ $4 - 4 = 1.6$ $4 - 4 = 1.6$ $4 - 4 = 1.6$ $4 - 4 = 1.6$	20 - 4 = 16 20 - 4 = 16	
Partitioning to subtract without regrouping	Use dienes to show how to partition the number when subtracting without regrouping 34-13 = 21	Children draw representations of dienes and cross off. 43 - 21 = 22	43 - 21 = 22	

Year 3 Subtraction				
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary
Column subtraction without rearouping	Use Base 10 to model. 147 - 32 Beain by showing 147 using	Draw representations to support understanding		Subtract Take away How many are left/left over? How many have gone?
	Base 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ones less, two less, ten less, one hundred less How many fewer is than? How much less is? Difference between Equals Is the same as
	Then remove the 32			Number bonds/pairs/facts Tens boundary
Column subtraction with regrouping	Begin with Base 10 then move to place value counters modelling the exchange of a ten into ten ones. 35 - 19 T O O O O O O O O O	Children may draw Base 10 or place counters and cross them off.	Then move to formal method. 7 2 8 - 5 8 2 = 1 4 6 H T 0 6 7 2 8 - 5 8 2 1 4 6	Hundreds boundary

H M H		

Year 4-6 Subtraction					
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary	
Subtracting tens and ones. Year 4 subtract with up to 4 digits Introduce decimal subtraction through context of money	234 - 179 Model process of exchange using Base 10 or Place Value counters and then move to place value counters.	Children to draw the place value counters and show the exchange.	Subtraction. 27154 - 1562 1192	Subtract Take away How many are left/left over? How many have gone? Ones less, two less, ten less, one hundred less How many fewer is than? How much less is? Difference between Equals Is the same as Number bonds/pairs/facts Missing number	
Year 5 subtract with at least 4 digits, including measures and money. Subtract with decimal values, including mixtures of integers and decimals. Include where	As Year 4	As Year 4	23°×1056 - 2128 23928	Tens boundary, hundreds boundary, ones boundary, tenths boundary Inverse	

the decimal needs to be aligned.		71^{10} X 16 9.00 - 372.50 6796.50	
Year 6 Subtract with increasingly large and more complex numbers and decimal values		- <u>89949</u> - <u>89949</u> - 60750	
		2 9 15.4 11 9 - 36.080 69.339	

Objective and strategy	Concrete	Year 1 Multiplica Pictorial	tion Abstract	Vocabulary
Doubling	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling. Double 4 is 8 f(x) = 0 + 0 = 0 + 0 = 0 + 0 = 0 + 0 = 0 + 0 = 0 + 0 +	Draw pictures to show how to double numbers.	Partition a number and then double each part before recombining it back together.	multiplication multiply multiplied by multiple doubling array number patterns

Counting in multiples	Count the groups as children are skip counting. Children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers.	
Making equal groups and counting the totals	Use manipulatives to create equal groups.	Draw and make representations. 2 groups of 3 = 6 2 g + o u p s o f 3 = 6 (• • • • • • • •	2 x 4 = 8	
Repeated addition	Use different objects to add equal groups.	Use pictorial representations, including number lines, to solve problems. e.g. There are 2 sweets in each bag. How many sweets are in 3 bags?	Write addition sentences to describe objects and pictures. $\bigcirc \bigcirc \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc & 0 \\ 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 = 15$	

Understandin g arrays	Use objects laid out in arrays to find answers.	Draw representations of arrays to show understanding.	2 x 3 = 6 2 x 5 = 10	

	Year 2 Multiplication										
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary							
Doubling	Model doubling using dienes and place value counters.	Draw pictures to represent how to double numbers.	Partition a number then double each part before recombining it.	multiplication multiply multiplied by multiple groups of times once, twice, three times ten times repeated addition equal groups of doubling halving array row, column number patterns multiplication table							
Counting in multiples of 2,5 and 10 from zero (repeated addition)	Count the groups as children are skip counting. Use counting sticks in class	Number lines and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers.	multiplication fact, division fact							

																	-		
											and the second se	5	>	K	4	11	2	_	0
												5	X		3	11	1		5
Multiplication	Create arrays using counters,	Use	e pi	icto	rial	repr	ese	ntat	ions	of					•	•	•		
is commutative	cubes or Numicon.	arr	ays culo	s to atio	sho ns a	w di [.] nd e	ffer xnlo	ent ore				2		•	• 1	•			
	11111	con	nmi	utat	ivit	γ.	~ ~ ~												
			369		1 Mile	112	1	20	120				2	x	5		1	0	
			2	×	3	-	3	x	2					X	2		1	0	
	Pupils should understand that		11	EL										,		5	×	2	
	arrays can represent	1	•	•	1 B		•	•	•)	2				0	-	3	~		
	as multiplication is		•	•		1200	•	•	•		U:	se ai ultin	n ar lica	ray tio	to v	writ d re	e einfo	nrce	
	commutative, the order of the multiplication does not	1.	8								re	epea	ted	ado	ditio	n.			
	affect the answer.													V		Lain			
														3	-	5			
													• •						
													2 .	+	2 +	2		6	
													3 -	+ .	3 =	6	2.		
													3 7 2 x	<	2 =	6	; 5		

Using the inverse This should be taught alongside division, so pupils learn how they work alongside each other.	Represent in the form of a bar model. 2 2 2 2 2 2 2 2 2 2	Show all 8 related fact family sentences. 2 × 4 = 8 8 = 2 × 4 4 × 2 = 8 8 = 4 × 2 8 ÷ 2 = 4 8 ÷ 4 = 2 8 ÷ 4 = 2 2 = 8 ÷ 4	

	Year 3 Multiplication								
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary					
Continue to understand equal grouping and repeated addition	Children build on previous learning about equal groups and the relationship with repeated addition. Children will recognise examples and non-examplesChildren understand the link between repeated addition and multiplicationOnce concr opport conce can us facts $3+3+3+3=12$ 	Once children have experienced concrete and pictorial opportunities to support their conceptual understanding, they can use recall of multiplication facts $3 \times 8 = 24$	multiply multipled by multiple, factor groups of times product once, twice, three times ten times repeated addition equal groups of doubling halving array row, column number patterns						
Using commutativity to support understanding of the times tables	3x4 = 12 $4x3 = 12$ $3x4z12$ $5x4z12$ $5x4z12$ $6x4z12$ $4x3 = 12$ Children recognise that arrays demonstrate commutativity	Children could draw arrays.	I need to work out 5 groups of 8. I know that 5 x 8 = 40 Therefore, I know that 8 x 5 also = 40. 2 x 4 = 8 20 x 4 = 80	multiplication table multiplication fact, division fact					

	There are 3 groups of 4 There are 4 groups of 3 There are 12 counters altogether		
Use known	Use Base 10 to explore the	Children understand how	
facts to multiply 10s	relationship between known	unitising 10s supports multiplying by multiples of 10	
Mumply 103	of 10		
	Make 4 groups of 3 ones		
		4 groups of 2 ones is 8 ones 4 groups of 2 tens is 8 tens	
	Make 4 groups of 3 10s	2 x 4 = 8	

		20 x 4 is 10 times larger so the answer is 8 x 10 = 80		
	What's the same? What's different?	+2 +2 +2 +2 0 1 2 3 4 5 6 7 8 9 +20 +0 +20 0 10 20 30 40 50 60 70 80 90		
Understanding and using	Represent numbers using dienes or place value		18 x 6 10 x 6 = 60 8 x 6 = 48	
multiplication	$\frac{\text{Tens}}{100000} \frac{\text{Ones}}{100000}$	$4 \times 3 = 12$ $4 \times 3 = 12$ $4 \times 5 = 20$ $12 + 20 = 32$ $4 \times 8 = 32$ Use partitioning to multiply 2-diait numbers by a single diait	18 x 6 = 60 + 48 = 108	
	3 groups of 2.	aigit number's by a single digit		

	Tens Ones Image: Second stress of the second stres of t	$18 \times 6 = 2$ $18 \times 6 = 10 \times 6 + 8 \times 6$ $= 60 + 48$ $= 108$ $18 \times 6 = 10 \times 6 + 8 \times 6$ $= 60 + 48$ $= 108$	×	T 3	0 4 2 8		
		Year 4 Multiplica	tion				
Objective and strategy	Concrete	Pictorial	Abstr	act			Vocabulary
Multiplying by multiples of 10 and 100	Use Base 10 to understand how to multiply by multiples of 1, 10 and 100 $3 \times 60 = 180$	Represent concrete resources pictorially 3 × 6 0 = 1 8 0	Childr unders commu menta 4 × 7 4 × 70 40 × 7 4 × 70	en use standii utativi Ily = 28) = 280 7 = 280 00 = 28	knowr ng of p ty to r)) 300	n facts and place value and nultiply	multiplication multiply multiplied by multiple, factor groups of times product once, twice, three times ten times repeated addition doubling

Use knowledge of commutativity and factors to simplify some multiplication s	This could lead to a discussion that 3×6 is ten times smaller etc.	$2 \times 6 \times 10 = 120$ $10 \times 6 \times 2 = 120$ $60 \times 2 = 120$	$400 \times 7 = 2800$ 24 x 5 = 12 x 2 x 5 12 x 2 x 5 = 12 x 10 = 120 Therefore 24 x 5 = 120	array row, column number patterns multiplication table multiplication fact, division fact
Grid method recap 2 digit by 1 digit Then 3 digits by 1 digit	Use Place Value counters as in Y3	As ¥3		
Column multiplication	Children can continue to be supported by Place Value counters at the multiplication stage. It is important at this stage that they multiply the ones first. 321×2	$3 \ 2 \ 1 \ \times \ 2 = 6 \ 4 \ 2$ $\times \ H \ T \ 0$ $0 \ 0 \ 0 \ 0 \ 0 \ 0$ $0 \ 0 \ 0 \ 0 \ 0 \ 0$ $0 \ 0 \ 0 \ 0 \ 0 \ 0$		

	It is important to model the corresponding written multiplication next to it.		$3 2 7 \times 4 = 1, 3 0 8$ $T_{h} H T 0$ $3 2 7$ $\times 4$ $1 3 0 8$ $1 2$ $1 2$	
		Year 5/6 Multiplic	ation	
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary
Column multiplication for 3 and 4 digit by 1 digit	As Y4 extending up to 4 digit numbers	As Y4 extending up to 4 digit numbers	As Y4 extending up to 4 digit numbers	

Column multiplication	Manipulatives may still be used with the corresponding calculation alongside.		$ \begin{array}{r} 1 2 3 4 \\ \times 1 6 \\ \frac{17420 4}{197440} \\ 19744 \\ 19744 \\ 10 \\ 1$	multiplication multiply multipled by multiple, factor groups of times product once, twice, three times ten times repeated addition doubling array row, column number patterns multiplication table multiplication fact, division fact
		Year 1 Division	1	
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary
Division as Sharing	I have 10 cubes can you share them equally between two groups?	Children draw pictures or shapes to share quantities	"12 shared between 3 is 4." There is no requirement to use the symbol for division in Y1. This could be verbalised or written using stem sentences.	division dividing grouping sharing

Division as grouping	Divide quantities into equal groups	Represent a whole and work out how many equal groups.	There is no requirement to use the symbol for division in Y1.
It is <u>vital</u> that children are given the	10 ÷ 2 = 5	0000000000	This could be verbalised or written using stem sentences.
opportunity to look at division as	88888	There are 10 in total. There are 5 in each group. There are 2 groups.	Children may relate grouping to counting back in steps of 2, 5 or 10.
grouping rather than just sharing.			

	Year 2 Division							
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary				
Division as sharing	Start with a whole and share into equal parts, one at a time.	Represent the objects shared into equal parts using a bar model.	Children will need to be introduced to the symbol for division	division dividing, divide, divided by, divided into grouping sharing, share, share equally left, left over				
			18:2=9	one each, two each, three each ten each group in pairs, threes tens equal groups of				
		20 shared into 5 equal parts. There are 4 in each part.	Children should be able to verbalise this as 18 divided into 2 groups means there are 9 in each group.	multiplication table multiplication fact, division fact				
	12 shared equally between 2. They get 6 each.	Use a bar model to support understanding of the division.						
	Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep							
	going until all the objects have been shared	18 ÷ 2 = 9						

		There are 4 groups.				
Division with	Link multiplication to division	Draw an array and use lines to	Find the inverse of			
arrays	by creating an array and	split it into groups to make	multiplication and division			
	thinking about the number	multiplication and division	sentences by creating eight			
	sentences that can be	sentences.	linking number sentences.			
	created.	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$5 \times 3 = 15 15 = 5 \times 3$ 3 \times 5 = 15 15 = 3 \times 5			
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	15 ÷ 3 = 5					
	15 ÷ 5 = 3					
	$3 = 15 \div 5$					
	5 - 15 ÷ 3					
	5 - 10 . 6					
	3 × 5 = 15					
	5 × 3 = 15					
	15 = 3 × 5					
	15 = 5 × 3					
Use known	Understand the relationship	Link equal grouping with	Relate times-table knowledge			
times-tables	between multiplication facts	repeated subtraction and known	directly to division.			
to solve	and division.	times-table facts to support	I × I0 = I0			
division		division	$2 \times 10 = 20$			
		<u>800000000</u> 0000000000000000000000000000	$3 \times 10 = 30$ 1 used the 10 4 $\times 10 = 40$ times-table			
		0 10 20 30 40	$5 \times 10 = 50$ to help me.			
		40 divided by 4 is 10.	6 × 10 = 60 3 × 10 = 30.			
			7 × 10 = 70			
		Use a bar model to support	8 × 10 = 80			
		understanding of the link				

4 aroups of 5 cars is 20 cars	between times-table knowledge	I know that 3 groups of 10	
in total	and division	makes 30 so T know that 30	
20 divided by A is 5	60 60	divided by 10 is 3	
	10 10		
		$3 \times 10 = 30$ so $30 \div 10 = 3$	

	Year 3 Division							
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary				
Use known times-tables to solve division	Use knowledge of known times-tables to calculate divisions.	Use knowledge of known times- tables to calculate divisions. Use knowledge of known times- tables to calculate divisions. Use knowledge of known times- tables to calculate divisions. 48 divided into groups of 4. There are 12 groups. Use knowledge of known times- tables to calculate divisions. 48 divided into groups of 4. There are 12 groups. A bar model may represent the relationship between sharing and grouping. 24	Use knowledge of known times- tables to calculate divisions. Solving examples with remainders	division dividing, divide, divided by, divided into left, left over, remainder grouping sharing, share, share equally one each, two each, three each ten each group in pairs, threes tens equal groups of 				

		24 ÷ 4 = 6 24 ÷ 6 = 4	
		Children understand how division is related to both repeated subtraction and repeated addition.	
		24 ÷ 8 = 3	
		+8 +8 +8 +8 +8 0 8 16 24 32	
		32 ÷ 8 = 4	
Use known	Use place value equipment to	Divide multiples of 10 by	Divide multiples of 10 by a
facts to	understand how to divide by	unitising.	single digit using known times-
divide	unitising.		tables.
multiples of		120 ÷ 3 = 40	1 0 1 0 - 1
10	Divide 6 ones between 3		10073-00
	groups		1 8 0 i 5 1 8 t en 5 1 8 i 3 = 6 1 8 0 : 3 = 6 0
		12 tens shared into 3 equal	
		4 tens in each group.	

	Now divide 6 tens between 3 groups What is the same? What is different?		
Divide a 2 digit number by a 1 digit number using partitioning	Children explore dividing 2- digit numbers by using place value equipment.	Children explore which partitions support particular divisions. 42 ÷ 2 =	69 ÷ 3 = 69 is partitioned into 60 and 9 69 ÷ 3 ÷ 2 3 60 ÷ 3 ÷ 2 0 9 ÷ 3 ÷ 2 3 60 ÷ 3 ÷ 2 3
	42 ÷ 2 = ?	96 ÷ 8	

Children have	14 ÷ 3 =	Jump forward in equal jumps on a number line	29:8=3with 1 Left	
an awareness	Divide objects between groups and	then see how many more you need to jump to	over	
of remainders	see how much is left over	find a remainder.	29:8=3 remainder 1	
	\frown			
Ilaina tha		\sim \sim \sim		
using the				
word word		0 4 8 12 13		
remainder not				
the letter r	X	Draw dots and group them to divide an amount		
		and clearly show a remainder.		
		remainder 2		
		Use bar models to show division with remain-		
		ders.		
		37		
		10 10 10 7		

Year 4 Division							
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary			
Understand the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts.	Represent divisions using an array.	Understand families of related multiplication and division facts.	division dividing, divide, divided by, divided into left, left over, remainder grouping sharing, share, share equally one each, two each, three each ten each group in pairs, threes tens equal groups of multiplication table multiplication fact, division fact			
Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide.	Draw the place value counters to support with calculation. $\bigcirc \bigcirc $	Use known facts to divide 10s and 100s by a single digit.				

	8 tens divided into 2 equal groups 4 tens in each group 8 hundreds divided into 2 equal groups 4 hundreds in each group	9 tens divided by 3 is 3 tens. 9 hundreds divided by 3 is 3 hundreds.								
Informal methods of dividing 2-	Use place value equipment to explore why different partitions are needed.	Children use a number line to support	Repr flex	resen ibly v	it hoi vhere	v to e nee	parti :ded.	tion		
digit and 3- digit numbers by a single	42 ÷ 3 = ?	50×2 20×2 (1×2)	8	4	4.	7	11	1	2	
digit	I will split it into 30 and 12, so that I can divide by 3 more easily	Then move to, 1 + 2 + 2 = 7 + 1	7	0	41.	7	11 1	1	0	
	more easily.		84 is as t	s partese	tition are b	ned in both	nto 7 divis	0 and	2 d 14, by 7.	

Year 5 division							
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary			
Short Division	$452 \div 4 =$ H T O 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	Children can draw the place value counters.	256 = 4 = 64 964 4236 4236	division dividing, divide, divided by, divided into left, left over, remainder grouping sharing, share, share equally one each, two each, three each ten each group in pairs, threes tens equal groups of multiplication table multiplication fact, division fact			

Short Division method with remainders represented using r

-	Children can draw the place value counters	258=4=64+1	
1/2 r 3 . 0	value counters. $451 \div 4 = 112c3$ $H \xrightarrow{T} 0$ 00 00 0000	<u>064</u> rl <u>4258</u>	

Year 6 division						
Objective and strategy	Concrete	Pictorial	Abstract	Vocabulary		
Short Division method with remainders	Manipulatives may still be used with the corresponding calculation alongside.		$589 \div 3 = 196 \cdot 1$ $35^{2}89$	division dividing, divide, divided by, divided into left, left over, remainder grouping sharing, share, share equally one each, two each, three each ten each group in pairs, threes tens equal groups of multiplication table multiplication fact, division fact		
Short Division (Bus stop) method with decimal remainders	Manipulatives may still be used with the corresponding calculation alongside.					

Long division	$ \begin{array}{c} 1 & 3 \\ 2 & 1 & 4 & 5 & \div & 1 & 3 & = & 1 & 6 & 5 \\ \hline 1 & 4 & 5 & \div & 1 & 3 & = & 1 & 6 & 5 \\ \hline 1 & 4 & 5 & & & & 1 & = & 1 & 3 \\ \hline 1 & 5 & & & & & & 1 & = & 1 & 3 \\ \hline 1 & 4 & 5 & & & & & & & 5 & 2 \\ \hline 1 & 3 & 12 & 11 & 4 & 5 & & & & & 5 & 2 \\ \hline 1 & 3 & 12 & 11 & 4 & 5 & & & & & & 5 & 2 \\ \hline 1 & 3 & 12 & 11 & 4 & 5 & & & & & & 5 & 2 \\ \hline 1 & 3 & 12 & 11 & 4 & 5 & & & & & & 5 & 2 \\ \hline 1 & 3 & 12 & 11 & 4 & 5 & & & & & & & 5 & 2 \\ \hline 1 & 3 & 12 & 11 & 4 & 5 & & & & & & & & & & & \\ \hline 1 & 3 & 12 & 11 & 4 & 5 & & & & & & & & & & & & & & & &$
	$ \begin{array}{c} - 1 3 0 (x_{10}) \\ \hline 6 5 \\ - 6 5 (x_{5}) \\ \hline \end{array} $